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Abstract Graphs with labeled vertices and edges play an important role
in various applications, including chemistry. A model of learning from posi-
tive and negative examples, naturally described in terms of Formal Concept
Analysis (FCA), is used here to generate hypotheses about biological activity
of chemical compounds. A standard FCA technique is used to reduce labeled
graphs to object-attribute representation. The major challenge is the con-
struction of the context, which can involve tens thousands attributes. The
method is tested against a standard dataset from an ongoing international
competition called Predictive Toxicology Challenge (PTC).

1 Introduction

In [1] we introduced a general construction based on a semilattice of object descrip-
tion, which we called pattern structure. An example that we used was related to a
lattice on sets of labeled graphs. In general, pattern structures are naturally reduced
to formal contexts. In this paper we present a practical data mining approach which
uses JSM or concept-based hypotheses. On the data side we use a standard FCA
technique, called ordinal scaling [2] for the reduction of labeled graphs to formal
contexts. We consider a chemical application in Predictive Toxicology and compare
the results to those obtained with the same learning model, but different representa-
tion language which used predefined descriptors (attributes) for describing chemical
compounds.

2 A Learning Model

2.1 Pattern Structures

In [1] we showed how such an approach is linked to the general FCA framework [2].
In [3] and in [4] we showed how this approach is related to standard machine learning
models such as version spaces and decision trees.

Let G be some set, let (D,u) be a meet-semilattice and let δ : G → D be a
mapping. Then (G,D, δ) with D = (D,u) is called a pattern structure, provided
that the set

δ(G) := {δ(g) | g ∈ G}

generates a complete subsemilattice (Dδ,u) of (D,u) (e.g., when (D,u) is complete,
or when G is finite), i.e., every subset X of δ(G) has an infimum uX in (D,u) and
Dδ is the set of these infima.

If (G,D, δ) is a pattern structure, the derivation operators are defined as

A� := ug∈A δ(g) for A ⊆ G

and
d� := {g ∈ G | d v δ(g)} for d ∈ D.
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The elements of D are called patterns. The natural order on them is given, as usual,
by

c v d : ⇐⇒ c u d = c,

and is called the subsumption order.
The operators (.)� obviously make a Galois connection between the power set

of G and (D,v). The pairs (A, d) satisfying

A ⊆ G, d ∈ D, A� = d, and A = d�

are called the pattern concepts of (G,D, δ), with extent A and pattern intent d. For
a, b ∈ D the pattern implication a→ b holds if a� ⊆ b�. Similarly, for C,D ⊆ G the
object implication C → D holds if C� v D�.

Since (Dδ,u) is complete, there is a (unique) operation t such that (Dδ,u,t)
is a complete lattice. It is given by

tX := u{c ∈ Dδ | ∀x∈X x v c}.

A subset M of D is t-dense for (Dδ,u) if every element of Dδ is of the form
tX for some X ⊆M . If this is the case, then with

↓ d := {e ∈ D | e v d}

we get
c = t(↓ c ∩M) for every c ∈ Dδ.

Of course, M := Dδ is always an example of a t-dense set.
If M is t-dense in (Dδ,u), then the formal context (G,M, I) with I given as

gIm:⇔ m v δ(g) is called a representation context for (G,D, δ).
In [1] we proved that for any A ⊆ G, B ⊆ M and d ∈ D the following two

conditions are equivalent:

1. (A, d) is a pattern concept of (G,D, δ) and B =↓ d ∩M .
2. (A,B) is a formal concept of (G,M, I) and d =

⊔
B.

Thus, the pattern concepts of (G,D, δ) are in 1-1-correspondence with the for-
mal concepts of (G,M, I). Corresponding concepts have the same first components
(called extents). These extents form a closure system on G and thus a complete
lattice, which is isomorphic to the concept lattice of (G,M, I).

2.2 Hypotheses in Pattern Structures

In [5–7] we considered a learning model from [8] in terms of Formal Concept Anal-
ysis. This model assumes that the cause of a target property resides in common
attributes of objects that have this property.

For pattern structures this can be formalized as follows. Let (G,D, δ) be a pat-
tern structure together with an external target property ω. As in the case of standard
contexts, the set G of all objects is partitioned into three disjoint sets w.r.t. ω: the
sets G+, G−, Gτ of positive, negative, and undetermined examples, respectively. For
positive examples it is known that they have property ω, for negative examples it is
known that they do not have property ω, and for undetermined examples it is not
known whether they have or do not have ω. This gives three pattern substructures
of (G,D, δ): (G+, D, δ+), (G−, D, δ−), (Gτ , D, δτ ), where δε for ε ∈ {+,−, τ} are
restrictions of δ to the corresponding sets of examples. For brevity sake, we shall
write just δ instead of δε.
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A positive hypothesis h is defined as a pattern intent of (G+, D, δ) that is not
subsumed by any pattern from δ(G−) (for short: not subsumed by any negative
example). Formally: h ∈ D is a positive hypothesis iff

h� ∩G− = ∅ and ∃A ⊆ G+ : A� = h.

A negative hypothesis is defined accordingly. A hypothesis in the sense of [9, 8, 7] is
obtained as a special case of this definition when (D,u) = (2M ,∩) for some set M
then we have a standard context (object-attribute) representation.

Hypotheses can be used for classification of undetermined examples as intro-
duced in [8] in the following way. If g ∈ Gτ is an undetermined example, then a
hypothesis h with h v δ(g) is for the positive classification of g if h is positive and
for the negative classification of g if it is a negative hypothesis.

An example g ∈ Gτ is classified positively if there is a hypothesis for its positive
classification and no hypothesis for the negative classification. g is classified nega-
tively in the opposite case. If there are hypotheses for both positive and negative
classification, then some other methods (based on standard statistical techniques)
may be applied.

2.3 An example with labeled graphs

Consider a pattern structure based on a given ordered set G of graphs (V,E) with
vertex- and edge-labels from the sets (LV ,�) and (LE ,�). Each labeled graph Γ
from G is a quadruple of the form ((V, l), (E, b)), where V is a set of vertices, E is
a set of edges, l:V → LV is a function assigning labels to vertices, and b:E → LE is
a function assigning labels to edges. We do not distinguish isomorphic graphs with
identical labelings.

The order is defined as follows: For two graphs Γ1 := ((V1, l1), (E1, b1)) and
Γ2 := ((V2, l2), (E2, b2)) from G we say that Γ1 dominates Γ2 or Γ2 ≤ Γ1 (or Γ2 is
a subgraph of Γ1) if there exists a one-to-one mapping ϕ : V2 → V1 such that it

– respects edges: (v, w) ∈ E2 ⇒ (ϕ(v), ϕ(w)) ∈ E1,
– fits under labels: l2(v) � l1(ϕ(v)), (v, w) ∈ E2 ⇒ b2(v, w) � b1(ϕ(v), ϕ(w)).

Two small examples are given in Figure 1.
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Figure1. With LV = {C, NH2, CH3, OH, x} we have subgraphs as shown in the diagrams
above. In all subsequent examples the label value x will not be admitted and unordered
vertex labels will be used

A pattern structure for these graphs then is defined as (G,D, δ), where the
semilattice D := (D,u) consists of all sets of subgraphs of graphs from G (“graph
sets”), and the meet operation u on graph sets is defined as follows: For two graphs
X and Y from G

{X} u {Y } := {Z | Zy ≤ X,Y, ∀Z∗ ≤ X,Y Z∗ 6≥ Z},
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i.e., {X}u {Y } is the set of all maximal common subgraphs of X and Y . The meet
of non-singleton sets of graphs is defined as

{X1, . . . , Xk} u {Y1, . . . , Ym} := MAX≤(ti,j({Xi} u {Yj}))

for details see [10, 6, 1]. Here is an example of applying u defined above:
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To get an example of such a pattern structure, let G := G+ ∪ G−, Where G+

consists of the first four graphs Γ1, Γ2, Γ3, Γ4 of Figure 2 and G− := {Γ5, Γ6, Γ7}.
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Figure2. Seven labeled graphs for a pattern structure.

The pattern concept lattice of the positive pattern structure (G+, D, δ) is given
in Figure 3.

2.4 Projections and projected hypotheses

Since for some pattern structures (e.g., for the pattern structure given by sets of
graphs with labeled vertices) even computing subsumption relation may be NP-
hard, in [1] we introduced projection operators to approximate pattern structures.
A projection (kernel operator) is a mapping ψ:D → D which is

monotone: if x v y, then ψ(x) v ψ(y),
contractive: ψ(x) v x, and
idempotent: ψ(ψ(x)) = ψ(x).

Any projection of a complete semilattice (D,u) is u-preserving, i.e., for any X,Y ∈
D

ψ(X u Y ) = ψ(X) u ψ(Y ),

which helps us to describe how the lattice of pattern concepts changes when we re-
place (G,D, δ) by its approximation (G,D,ψ◦δ). First, we note that ψ(d) v δ(g) ⇔
ψ(d) v ψ ◦ δ(g). Then, using the basic theorem of FCA (which, in particular allows
one to represent every lattice as a concept lattice), we showed how the projected
pattern lattice is represented by a context [1]:



5

����� ������ �
� ���������

�		
 		�
� 		
		�

����� ������
�
 �

� 
�

����� ������� ���
�		
 		�

� 		
		�

��� � ������� � � � � �
�		
 		�

� 		
		�

����� ������� ��� ���
�		
 		�

� 		
		�

����� ��� ��� ���

��� � ��� ��� ����� ��� ���

��� � ��� ����� ��� �!��� ���

��� � ����� �!��� �!���

"

#%$'&)( *)(,+'-.- /10'23#%4,-�&6587:9'7<;17%=

����� �� ���
�		
 		�

� 		
		�

����� �� ���
�		
 		�

� 		
		�

� ������ �
�����

�		
 		�
� 		
		�

� ��� �>��������� ��?
�		
 		�

� 		
		�

@A-�B'0�*)(,+'-.- /10'23#%4,-DC

����� � �E?���� �
� ������ �E?

�		
 		�
� 		
		�

����� �>�E?���� �
� ������ ��?

�		
 		�
� 		
		�

��� � � �E?���� �E?
�		
 		�

� 		
		�

��� � �>��?���� ��?
�		
 		�

� 		
		�

����� �F�����E? �����
�		
 		�

� 		
		�

G

H

Figure3. The pattern concept lattice of the positive pattern structure

Theorem 1 For pattern structures (G,D, δ1) and (G,D, δ2) the following state-
ments are equivalent:

1. δ2 = ψ ◦ δ1 for some projection ψ of D.
2. There is a representation context (G,M, I) of (G,D, δ1) and some N ⊆M such

that (G,N, I ∩ (G×N)) is a representation context of (G,D, δ2).

The properties of projection allow one to relate hypotheses in the original rep-
resentation with those approximated by a projection. As in [1] we use the term
“hypothesis” to those obtained for (G,D, δ) and we refer to those obtained for
(G,D,ψ ◦ δ) as ψ-hypotheses. There is no guarantee that the ψ-image of a hypothe-
sis will be a ψ-hypothesis. In fact, our definition allows that ψ is the “null projection”
with ψ(d) = 0 for all d ∈ D (total abandoning of the data with no interesting hy-
potheses). However, if ψ(d) is a (positive) hypothesis, then ψ(d) is also a (positive)
ψ-hypothesis. If we want to look the other way round, we have the following: if ψ(d)
is a (positive) ψ-hypothesis, then ψ(d)�� is a (positive) hypothesis [1].

The set of all hypothesis-based classifications does not shrink when we pass from
d to ψ(d). Formally, if d is a hypothesis for the positive classification of g and ψ(d)
is a positive ψ-hypothesis, then ψ(d) is for the positive classification of g.

The above observations show that we can generate hypotheses starting from
projections. For example, we can select only those that can be seen in the projected
data, which is suggested by the following theorem from [1]:

Theorem 2 For any projection ψ and any positive hypothesis d ∈ D the following
are equivalent:

1. ψ(d) is not subsumed by any negative example.
2. There is some positive ψ-hypothesis h such that h�� v d.

An example is shown in Figure 4). We have used the same data as in Figure 3,
but the set D of graph sets was restricted to graphs with less then four vertices.
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Figure4. The lattice of the projected positive pattern structure

3 Scaling Labeled Graphs and Their Projections

In this section we shall discuss an application of the learning model, introduced in
Section 2 to the problem of bioactivity prediction. In our experiments we will use
the data from the Predictive Toxicology Challenge (PTC), an ongoing international
competition. First, we shall briefly describe the format of PTC (Subsection 3.1).
Then we shall discuss k-projections of labeled undirected graphs as a means of
approximate representation of graph data.

3.1 Predictive Toxicology Challenge

The program of a workshop on Predictive Toxicology Challenge (PTC) [11], (at the
joint 12th European Conference on Machine Learning and the 5th European Con-
ference on Principles of Knowledge Discovery in Databases) consisted in a competi-
tion of machine learning programs for generation of hypothetical causes of toxicity
from positive and negative examples of toxicity. The organizers (Machine Learning
groups of the Freiburg University, Oxford University, and University of Wales) to-
gether with toxicology experts (US Environmental Protection Agency, US National
Institute of Environmental and Health Standards) provided participants with train-
ing and test datasets.

The training dataset consisted of descriptions of 185 molecular graphs of 409
chemical compounds with indication of whether a compound is toxic or not for a
particular sex/species group out of four possible groups: male mice, female mice,
male rats and female rats. For each group there were about 120 to 150 positive
examples and 190 to 230 negative examples of toxicity. The test dataset consisted
of 185 substances for which forecasts of toxicity should be made. Twelve research
groups (world-wide) participated in PTC, each with up to 4 prediction models for
every sex/species group.
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3.2 Representation contexts for graph data

The source data of the PTC datasets are molecular graphs. These are graphs in the
sense of Subsection 2.3 above, with labeled Vertices and edges. We cant therefore
apply the methods from Section 2. Another view is the following (working directly
with a representation context): Think of the source data as a many-valued con-
text with a single many-valued attribute “graph”, assigning to each compound its
molecular graph. This many-valued context is (ordinaly) scaled one, such that the
attributes of the derived context are all (connected) subgraphs of the graphs under
consideration and each graph has its subgraps as attributes.

However, generating this context is a rather time-consuming process. The diffi-
culty of generating all subgraphs is due to costly isomorphism and subgraph isomor-
phism testing (the latter is an NP-complete problem). There are several well-known
algorithms for these problems, e.g., that of B. D. McKay [12] for isomorphism test-
ing and the algorithm of J. R. Ullmann [13] for testing subgraph isomorphism. Since
the generation of all subgraphs for an arbitrary labeled graph is a computationally
hard task, we use k-projections of initial graphs. The notion of projection intro-
duced in Section 2 for general semilattices can be specified for the lattice on graph
sets, e.g., as follows.

Definition 1. Let Γ = ((V, l), (E, b)) be a labeled graph. The set SΓ = {Γ∗ =
((V∗, l∗), (E∗, b∗)) | Γ∗ is connected, Γ∗ ≤ Γ, |V∗| ≤ k} is called a k-projection of Γ .

Thus, k-projection of a labeled graph Γ is a set of all subgraphs (up to iso-
morphism) of Γ with up to k-size set of vertices. Obviously, k-projection satisfies
the properties of the kernel operator. When we use k-projections of graphs, then in
the corresponding representation context (G,M, I), the set of objects G is a set of
chemical compound names, M is a set of subgraphs of molecular graphs with k or
less vertices and gIm means that the graph m ∈M is a subgraph of the molecular
graph of the compound g ∈ G.

So far, we have generated these contexts for the values of k from 1 up to 8. With
the growth of k, the number of attributes in the resulting scaled context becomes
very large (thousands of attributes), but reduction of attributes (a standard FCA
technique) reduces the size of contexts in several times, see Figure 5.

projection size 1 2 3 4 5 6 7 8

# attributes in full context 22 95 329 1066 3275 9814 28025 76358
# attributes in reduced context 22 72 153 373 812 1548 2637 3981
reducing time (in sec.) 1 1 2 5 16 57 219 883

Figure5. PTC dataset: number of attributes in representation contexts before and after
attribute reduction

4 QuDA: Qualitative Data Analysis

After the preprocessing step described above, we had 8 datasets. Each of these
datasets was an encoding of the original PTC data by means of 1- to 8-projections,
respectively. Our goal was to test whether hypotheses obtained for these encodings
can be better than those obtained for other encoding schemes proposed by the PTC
participants [11]. To do that we have used the QuDA software [14, 15].
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4.1 A brief description of QuDA

History and motivation. QuDA, a data miners’ discovery environment was de-
veloped at the Intellectics group of the Darmstadt University of Technology in 2001-
2003. The authors are P. Grigoriev and S. Yevtushenko. This project was started
as a “companion” data mining system for the DaMiT tutorial [16] by initiative of
the authors.
Usage. QuDA can serve as a personal data mining environment for analyzing mid-
sized datasets (up to ten thousands of records). Most of its functionality is also
accessible from external applications thus allowing the use of it in integrated solu-
tions. QuDA has an open architecture; it supports scripting and has import/export
capabilities for the most commonly used data/model formats.
Functionality. QuDA implements various data mining techniques, including as-
sociation rule mining, decision tree induction, JSM-reasoning1, Bayesian learning,
and interesting subgroup discovery. It provides also several preprocessing and post-
processing utilities, including data cleaning tools, visualization of attribute distri-
butions, dynamic Hasse diagrams, and a ruleset navigator.
Implementation. QuDA is implemented entirely in Java. The system consists of
approximately 1700 classes; the source codes take approximately 3.5Mb.
Availability. QuDA is freeware. It is available for download at the DaMiT tuto-
rial site (http://damit.dfki.de) as well as at its own site at the Intellectics group
(http://ki-www2.intellektik.informatik.tu-darmtadt.de/˜jsm/QDA).

4.2 Using QuDA for bioactivity prediction: sequential covering

QuDA implements several variants of the learning model described in Section 2. In
our experiments we used the strategy of sequential covering with structural simi-
larities. This procedure does not generate the set of all hypotheses, but generates a
subset of it, sufficient to explain every of the examples in the training set.

Briefly, this strategy can be described as follows:

1. objects in G+ are sorted according to some fixed linear order (e.g., in the order
they appear in the dataset);

2. the set of hypotheses H is initialized with an empty set;
3. first object g+ in G+, which is not covered by any hypothesis in H is selected;
4. a hypotheses h, covering g+ is found by generalizing its description with de-

scriptions of other objects in G+ uncovered so far by H;
5. the new-found hypothesis h is added to H and the procedure continues from

the step 3 until every object in G+ is covered by at least one hypothesis in H.

A pseudocode for the main loop of this procedure is given in Figure 6. Figure 7
provides pseudocode for the step 4: finding a hypothesis that explains a particular
example, uncovered so far. We provide only the pseudocode for generating positive
hypotheses. Generating negative hypotheses is organized dually.

Although the sequential covering strategy has a number of obvious drawbacks
(most notably – its dependence on the selected order of objects), we decided to use
this strategy instead of generating all hypotheses for several reasons:

– it has attractive computational complexity: linear in the number of attributes
in the representation context (see Section 2), linear in the number of negative
examples (G−), and quadratic in the number of positive examples (G+);

– in practical experiments on a number of real-world datasets [15] it has shown
classification accuracy and recall comparable to those of the strategy where all
hypotheses are generated.
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function SequentialCovering()

{
H := ∅;

UnexplainedExamples := G+;

for each g in G+

{
if g ∈ UnexplainedExamples
{

explanation := findExplanation(g, UnexplainedExamples);
UnexplainedExamples := UnexplainedExamples \ explanation�;
H := H ∪ {explanation};

}
}
return H;

}

Figure6. Sequential covering: the main loop

function findExplanation(g, P)

{
explanation := δ(g);

for each g+ in P
{

candidate := explanation u δ(g+)
if candidate� ∩G− = ∅

explanation := candidate;
}
return explanation;

}

Figure7. Sequential covering: findExplanation procedure
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We conclude this section with a final remark, which aims at making our results
reproducible. The sequential covering strategy naturally depends on the order on
objects. This order is used in the main loop to select the next object to find an
explanation for; at the same time this order determines the sequence in which objects
are used for generalization in the findExplanation procedure. In our experiments
we have used the order in which objects were presented in the source dataset.

5 Experiments with the PTC dataset

One of the standard techniques used in machine learning for comparison of the
classification algorithms is the so-called ROC-analysis 2. Here, results obtained by
a learning model are represented by a point on (x, y)-plane, where x stays for the
relative number of false positive predictions and y stays for the relative number
of true positive predictions. The best (usually unattaianble) point is (0,1) and the
strait line from (0,0) to (1,1) corresponds to models that are equivalent to random
guess under uniform distribution. When the costs of correct classification and mis-
classification are not known in advance, “best” models correspond to points lying
on the convex hull of leftmost points. ROC-diagrams were used in the Predictive
Toxicology Challenge to select the best learning models. Here we also use ROC-
diagrams to demonstrate the usage of projected pattern structures for bioactivity
prediction in comparison to other encoding schemes and/or other learning models.

5.1 Projected pattern structures “On the ROC”

The results are shown in Figure 8. The following abbreviations are used:

– PR1, PR2, ..., PR8 – the results obtained using 1- to 8-Projection representa-
tions, respectively, in combination with sequential covering strategy;

– WAI1, GONZ, KWAI, LEU3 are other “best” models submitted to the Predic-
tive Toxicology Challenge for this animal group.

Note, that the Figure 8 shows both the “old” ROC-curve (composed by LEU3,
KWAI, GONZ, and WAI1 models) and the “new” one (composed by LEU3, PR7,
PR5, and WAI1 models).

As one can “read” from the ROC-diagram in Figure 8:

– using 1-Projections does not lead to any classifications at all (false positive rate
and true positive rate equal zero);

– using 2-Projections results in rather bad classifications: the corresponding point
on the ROC-diagram is below the diagonal;

– using 3-Projections results in better classifications: the corresponding point on
the ROC-diagram is above the diagonal;

– using 4-Projections results in even better classifications: the corresponding point
is above the “old” ROC-curve;

– using 5-Projections occurs to be one of the four “new” best strategies: it results
in making 8 true positive predictions with only 2 false positive ones;

– using 6-Projections, however, does not result in better classifications: the num-
ber of true positives decreases to 6; the number of false positives remains the
same;

– using 7-Projections, with 4 true positives and 1 false positives again appears on
the “new” ROC-curve;

1 This name stands for a group of lattice-based machine learning methods, including the
model described in Section 2.

2 ROC is the abbreviation for Receiver Operating Characteristic, see [17]
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Figure8. Projected pattern structures “On the ROC”. Animal group: MR (male rats).

– using 8-Projections increases the number of true positives to 6, but also increases
the number of false positives to 2; this strategy is thus strictly worse than using
5-Projections (assuming positive cost of making a true positive classification);

For the FR group (female rats; see Figure 9) the strategies with 4-, 5-, 6-, and
8-Projections occur above the “old” ROC-curve, without, however, making any of
the “old” best models (LEU3 and KWAI) lose their positions.

For the other two animal groups (MM and FM, male and female mice) our
strategy did not bring any good results (see Figure 10).

6 Conclusions and Further Work

Our practical result is: In two animal groups of the four the classification accuracy
obtained with molecular graph projections and sequential covering strategy appeared
to be among the best known. In the other two groups, however, this was not the
case.

Somewhat more interesting, although expected result is the demonstrated non-
monotonicity of the classification accuracy by k-Projections with the growth of k.
At first glance, this result may seem strange, as increasing the size of projections
we increase the amount of information available for the learning algorithm. How-
ever, in practice this information growth often results in generating more irrelevant
hypotheses and thus, in the decrease of classification accuracy.

The most interesting directions of further research are as follows:

– check the proposed approach on other real-world datasets involving graph repre-
sentation; these include other datasets from the bioactivity prediction domain as
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Figure9. Projected pattern structures “On the ROC”. Animal group: FR (female rats).

Figure10. Projected pattern structures “On the ROC”. Animal groups: MM and FM
(male and female mice).
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well as datasets from other domains, e.g. web structure mining, ontology-based
text mining, etc.;

– incorporate standard machine learning algorithms for feature selection and/or
develop specialized ones to overcome classification accuracy decrease when grow-
ing the size of projections;

– in our experiments we have used a trivial conflict resolution technique: if a
certain object contained both positive and negative hypotheses it remained
undefined; other strategies, e.g. voting, may prove more appropriate.
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